Values

Fiche Technique

KIMYA ABS CARBON 3D FILAMENT

Low-cost reinforced filament for FFF 3D Printers

DESCRIPTION

Kimya ABS Carbon is a 3D printing filament made from a blend of ABS (Acrylonitrile-Butadiene-Styrene) and carbon fibers. As a member of the styrenic polymer family, this composite material benefits from the toughness of ABS while the added carbon fibers significantly improve its rigidity and dimensional stability. Kimya ABS Carbon is commonly used by drone manufacturers, modeling enthusiasts, and for producing tools and functional parts. It offers a strong balance of strength, durability, and precision for technical 3D printing projects.

BENEFITS

• Increased Rigidity.

Properties

- · Lightweight and Strong.
- Enhanced Print Precision.

TECHNICAL DATA

Diameter Density Moisture rate Melt flow index (MFI) Glass transition temperature (Tg)	1.75 ± 0.1 mm 2.85 ± 0.1 mm 1.048 g/cm ³ <0.5% 17.4g/10min 108°C (226°F)	INS-6712 ISO 1183-1 INS-6711 ISO 1133-1 (@220°C-10kg) ISO 11357-1 DSC (10°C/min-20-280°C)
Properties	Values	Test Methods
Tensile Modulus	3,395 MPa (492.55 ksi)	ISO 527-2/5A/50
Tensile Strength	36.7 MPa (5.32 ksi)	ISO 527-2/5A/50
Tensile Stress at Break	31 MPa (4.50 ksi)	ISO 527-2/5A/50
Tensile Strain at Break (type A)	1.9 %	ISO 527
Flexural Modulus	2,952 MPa (428.15 ksi)	ISO 178
Deformation at Flexural Strain	>5%	ISO 178
Flexural Stress at Conventional Deflection (3.5% Strain)*	173 MPa (25.1 ksi)	ISO 178
Charpy Impact Resistance	18 kJ/m² (8.6 ft-lbs/in²)	ISO 179-1/1eA
Shore Hardness	78.2D	ISO 868

PROCESSING

Printing Direction

Printing Speed Nozzle Temperature Bed Temperature

XΥ

Initial layers: 10-20 mm/s, further layers 30-60 mm/s 235°C - 255°C (455°F - 491°F) 85°C - 95°C (185°F - 203°F)

Test Methods

NOTES

- *According to ISO 178, end of the test at 5% deformation even if there is no specimen break.
- The data should be considered as indicative values Properties can be influenced by production conditions.

Dernière mise à jour : 2025-09-29 Nom du chapitre : Print-Tech®