Values

76.6 D

Fiche Technique

KIMYA HIPS-R 3D FILAMENT

Test Methods

Recycled HIPS Soluble support additive manufacturing filament

DESCRIPTION

Kimya HIPS-R is a 3D printing filament made from recycled High Impact Polystyrene (HIPS), part of the styrenic polymer family. Despite being made from recycled materials, HIPS-R maintains strong impact and heat resistance, making it a reliable and sustainable option for various applications. Its low permeability makes it well-suited for leak-proof containers, while its solubility in D-limonene sets it apart from other filaments - allowing it to be used as a dissolvable support material. Kimya HIPS-R is commonly used in packaging, household appliances, and dual-extrusion printing setups.

BENEFITS

Dissolvable.

Properties

- Durable.
- · Sustainable Choice.

TECHNICAL DATA

Diameter	$1.75 \pm 0.1 \text{mm}$	INS-6712
Density	1.03 g/cm ³	ISO 1183-1
Moisture rate	< 0.5 %	INS-6711
Melt flow index (MFI)	4.7 - 7.1 g/10min	ISO 1133-1 (@200°C-5kg)
Glass transition temperature (Tg)	97°C (207°F)	ISO 11357-1 DSC (10°C/min-20-260°C)
Properties	Values	Test Methods
Tensile Modulus	1,273 MPa (185 ksi)	ISO 527-2/5A/50
Tensile Strength	23.7 MPa (3.4 ksi)	ISO 527-2/5A/50
Tensile Strain at Strength	1.5 %	ISO 527-2/5A/50
Tensile Stress at Break	16.7 MPa (2.4 ksi)	ISO 527-2/5A/50
Tensile Strain at Break (type A)	11.5 %	ISO 527-2/5A/50
Flexural Modulus	1,533 MPa (222 ksi)	ISO 178
Flexural Stress at Conventional Deflection (3.5% Strain)*	36.2 MPa (5.25 ksi)	ISO 178
Charpy Impact Resistance	7.2 kJ/m ² (3.42 ft-lbs/in ²)	ISO 179-1/1eA

PROCESSING

Printing Direction

Shore Hardness

Printing Speed Nozzle Temperature Bed Temperature

XΥ

Initial layers: 20-30 mm/s, further layers 45-60 mm/s 240°C - 260°C (464°F - 500°F) 90°C - 100°C (194°F - 212°F)

ISO 868

SUSTAINABILITY

NOTES

- *According to ISO 178, end of the test at 5% deformation even if there is no specimen break.
- The data should be considered as indicative values Properties can be influenced by production conditions.

Dernière mise à jour : 2025-12-22