Values

neboesch Phone: +352 58 22 82 1 ifferdange Fax: + 352 58 49 35 E-mail: sales@airtech.lu Website: www.airtech.lu

KIMYA ABS-ESD 3D FILAMENT

ESD ABS additive manufacturing filament

Test Methods

DESCRIPTION

RTECH

Kimya ABS-ESD is a 3D printing filament made from ABS (Acrylonitrile Butadiene Styrene) with added ESD (Electrostatic Discharge) protection. As part of the styrenic polymer family, it combines the mechanical strength and rigidity of standard ABS with the ability to safely dissipate static electricity. This makes it particularly useful for sensitive electronic applications. Kimya ABS-ESD is lightweight, impact-resistant, and easy to print, offering a reliable solution for functional parts where electrostatic protection is essential.

BENEFITS

- ESD Protection.
- Strong Yet Lightweight.
- Impact Resistant.

Properties

TECHNICAL DATA

Diameter	1.75 ± 0.1 mm 2.85 ± 0.1 mm	INS-6712
Density	1.064 g/cm³	ISO 1183-1
Moisture rate	< 0.5 %	INS-6711
Melt flow index (MFI)	16 - 24 g/10min	ISO 1133-1 (@200°C-10kg)
Glass transition temperature (Tg)	107°C (225°F)	ISO 11357-1 DSC (10°C/min-20-220°C)
Properties	Values	Test Methods
Surface resistivity	$1 \times 10^7 - 1 \times 10^{10} \Omega/\text{sq}$	ASTM D257
Tensile Modulus	1,207 MPa (175 ksi)	ISO 527-2/5A/50
Tensile Strength	27 MPa (3.9 ksi)	ISO 527-2/5A/50
Tensile Strain at Strength	2.9 %	ISO 527-2/5A/50
Tensile Stress at Break	18 MPa (2.6 ksi)	ISO 527-2/5A/50
Tensile Strain at Break (type A)	5.7 %	ISO 527
Flexural Modulus	957 MPa (141.7 ksi)	ISO 178
Deformation at Flexural Strain	> 5 %	ISO 178
Flexural Stress at Conventional Deflection (3.5% Strain)*	33.8 MPa (4.90 ksi)	ISO 178
Charpy Impact Resistance	13.3 kJ/m² (6.32 ft-lbs/in²)	ISO 179-1/1eA
Shore Hardness	64.1 D	ISO 868

PROCESSING

Printing Direction

Printing Speed Nozzle Temperature Bed Temperature

XY

Initial layers: 10-20 mm/s, further layers 25-50 mm/s

255°C - 270°C (491°F - 518°F) 90°C - 100°C (194°F - 212°F)

SUSTAINABILITY

NOTES

- *According to ISO 178, end of the test at 5% deformation even if there is no specimen break.
- The data should be considered as indicative values Properties can be influenced by production conditions.

Dernière mise à jour : 2025-12-22