Values

Fiche Technique

KIMYA ABS-R 3D FILAMENT

Low-cost filament for FFF 3D Printers

Test Methods

DESCRIPTION

Kimya ABS-R is a 3D printing filament made from 100% post-consumer recycled ABS (Acrylonitrile Butadiene Styrene). As a thermoplastic polymer, ABS offers a combination of lightness, impact resistance, and good temperature performance. By using recycled material, ABS-R supports the circular economy and helps reduce CO₂ emissions, water and energy consumption, and reliance on fossil resources. It's well-suited for functional prototypes and enclosures in sectors such as appliances, automotive, hardware, and toys - offering both performance and sustainability.

BENEFITS

- Durable.
- Heat-Resistant.

Properties

Ready to Versatile Industrial Use.

TECHNICAL DATA

i iopoitico	v alaco	rest metrious
Diameter	$1.75 \pm 0.1 \text{ mm}$ $2.85 \pm 0.1 \text{ mm}$	INS-6712
Density	1.049 g/cm³	ISO 1183-1
Moisture rate	< 0.5 %	INS-6711
Melt flow index (MFI)	14.2 g/10min	ISO 1133-1 (@220°C-10kg)
Glass transition temperature (Tg)	110°C (230°F)	ISO 11357-1 DSC (10°C/min-20-220°C)
Properties	Values	Test Methods
Tensile Modulus	1,722 MPa (250 ksi)	ISO 527-2/5A/50
Tensile Strength	32.2 MPa (4.7 ksi)	ISO 527-2/5A/50
Tensile Strain at Strength	2.1 %	ISO 527-2/5A/50
Tensile Stress at Break	27.5 MPa (4.0 ksi)	ISO 527-2/5A/50
Tensile Strain at Break (type A)	9.4 %	ISO 527-2/5A/50
Flexural Modulus	1,577 MPa (255.8 ksi)	ISO 178
Flexural Stress at Conventional Deflection (3.5% Strain)*	48.4 MPa (7.0 ksi)	ISO 178
Charpy Impact Resistance	8.5 kJ/m ² (4.04 ft-lbs/in ²)	ISO 179-1/1eA
Shore Hardness	72.2 D	ISO 868

PROCESSING

Printing Direction

Printing Speed Nozzle Temperature **Bed Temperature**

XY

Initial layers: 10-15 mm/s, further layers 10-50 mm/s 255°C - 270°C (491°F - 518°F) 85°C - 95°C (185°F - 203°F)

NOTES

- *According to ISO 178, end of the test at 5% deformation even if there is no specimen break.
- The data should be considered as indicative values Properties can be influenced by production conditions.

Dernière mise à jour : 2025-09-29 Nom du chapitre : Print-Tech®