

Fiche Technique

KIMYA PETG CARBON 3D FILAMENT

PETG/Carbon Fibre additive manufacturing filament

DESCRIPTION

Kimya PETG Carbon is a 3D printing filament made from PETG reinforced with carbon fibres. This combination enhances the mechanical performance of standard PETG by significantly increasing its rigidity and strength. As a result, PETG Carbon is particularly well-suited for producing technical parts that require dimensional stability and durability. It is especially valued in the automotive sector for functional components where performance and precision are key.

BENEFITS

- High rigidity.
- Easy to print.
- Wide range of applications.

TECHNICAL DATA

Properties

Diameter	1.75 ± 0.1 mm
Density	1.28 g/cm ³
Melt flow index (MFI)	6.5 - 10 g/10min
Glass transition temperature (Tg)	78°C (172°F)

Values

Tensile Modulus	7,773.3 MPa (1127.4 ksi)
Tensile Strength	92.9 MPa (13.5 ksi)
Tensile Strain at Strength	1.9 %
Tensile Stress at Break	92.9 MPa (13.5 ksi)
Tensile Strain at Break (type A)	1.9 %
Flexural Modulus	5,664 MPa (821.5 ksi)
Deformation at Flexural Strain	4.2 %
Flexural Strength*	138 MPa (20.0 ksi)
Flexural Stress at Conventional Deflection (3.5% Strain)*	120.6 MPa (17.5 ksi)
Flexural Stress at Break	42.2 MPa (6.1 ksi)
Deformation at Flexural Strength	3.1 %
Charpy Impact Resistance	4.6 kJ/m ² (2.2 ft-lbs/in ²)
Shore Hardness	78.8 D

Test Methods

INS-6712
ISO 1183-1
ISO 1133-1 (@225°C-2.16kg)
ISO 11357-1

Test Methods

ISO 527-2/1A/50
ISO 178
ISO 179-1/1eA
ISO 868

PROCESSING

Printing Direction

Printing Speed	Initial layers: 10-20 mm/s, further layers 30-60 mm/s
Nozzle Temperature	230°C - 260°C (446°F - 500°F)
Bed Temperature	85°C - 95°C (185°F - 203°F)

XY

Initial layers: 10-20 mm/s, further layers 30-60 mm/s
230°C - 260°C (446°F - 500°F)
85°C - 95°C (185°F - 203°F)

SUSTAINABILITY

 Can be
recycled

 Recyclable
packaging

NOTES

- According to ISO 178, end of the test at 5% deformation even if there is no specimen break.
- The data should be considered as indicative values - Properties can be influenced by production conditions.

Dernière mise à jour : 2025-12-22

Nom du chapitre : KIMYA Filaments for Additive Manufacture